

in Transition Economies

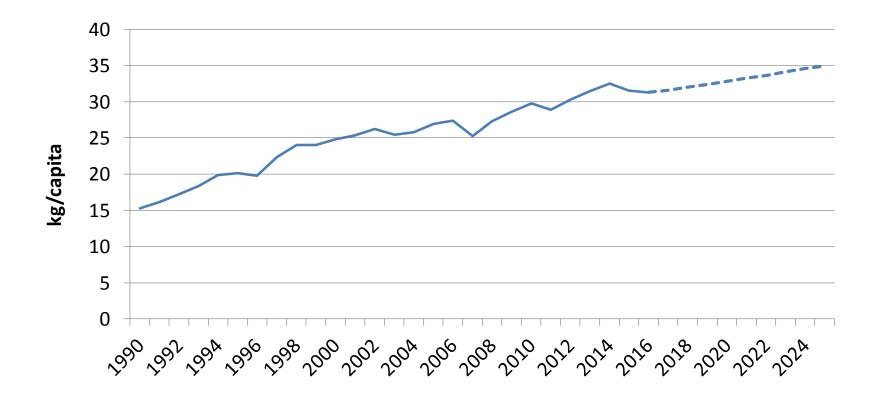
LEIBNIZ INSTITUTE OF AGRICULTURAL DEVELOPMENT IN TRANSITION ECONOMIES

IAMO Forum 2017 | 21 – 23 June

Leibniz Institute of Agricultural Development

in Transition Economies

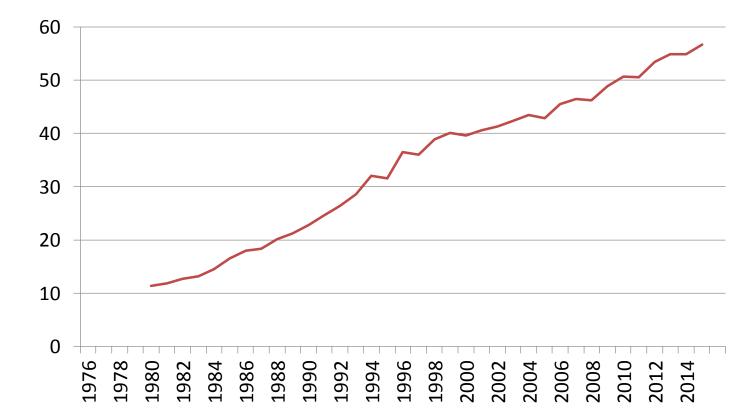
Technical and environmental efficiency of livestock farms in China: a slacks-based DEA approach


Lena Kuhn, Tomas Balezentis, Hou Lingling, Dan Wang

IAMO Forum 2017 | 21 – 23 June

Leibniz Institute of Agricultural Development in Transition Economies

Chinese annual pork consumption (kg/capita)


Source: OECD-FAO Agricultural Outlook 2016

1. Introduction

Leibniz Institute of Agricultural Development in Transition Economies

Output of pork meat (million tons)

Source: China National Bureau of Statistics 2017

million tons

4

1. Introduction

Leibniz Institute of Agricultural Development in Transition Economies

©Peter Parks—AFP/Getty Images

©baidu.cn

1. Introduction

Leibniz Institute of Agricultural Development in Transition Economies

Leakage of pollutants into

antibiotics (Zhao et al.

2010; Chen et al. 2012)

cadmium (Li et al. 2010;

Xiong et al. 2010; Shi et

phosphorus and nitrates

(i.e. Fang et al. 2006; Ju

et al. 2006; Chen et al.

2010; Bai et al. 2016).

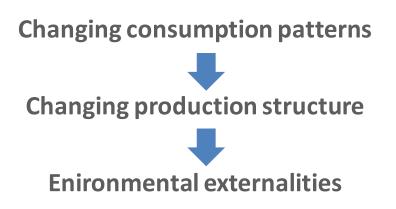
al. 2011; Wang et al.

heavy metals like

copper, zinc and

soil and water:

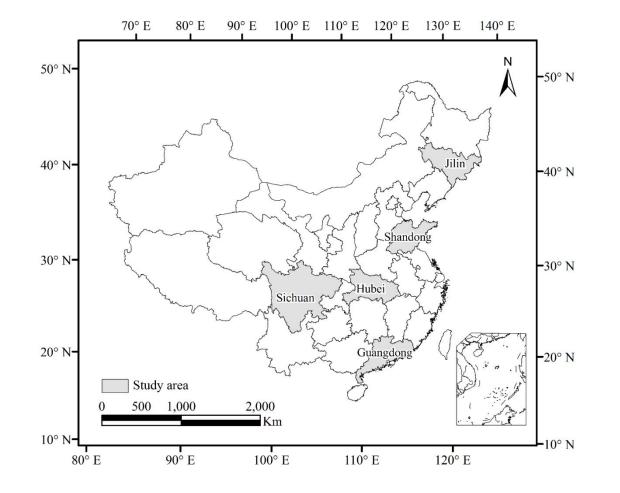
2013).


_

www.iamo.de/en

1.1 Research questions

Leibniz Institute of Agricultural Development in Transition Economies



- A) How does farm size affect both production and waste management?
- B) What policy options to reduce the emission of pollutants?

2. Data

Leibniz Institute of Agricultural Development in Transition Economies

2013 Farm Survey

- Center for Chinese
 Agricultural Policy
 (CAS), U.S. Grains
 Council and Asian
 Agribusiness
 Consulting
- 405 hog farms
- Questions: Waste management, hog production, farm characteristics, village policies

Step 1: Estimation of Environmental Efficiency

DEA approach: Comparison of productive units in terms of their efficiency of processes (Charnes et al. 1978). Environmental externalities as **undesired outputs** (Faere et al. 1989)

Slack-based DEA model: Non-radial DEA **model** that deals with both input excesses and output shortfalls simultaneously. Tone 2001). Extended to account for undesirable outputs (Zhou et al. 2006, Cooper et al. 2007, Faere & Grosskopf, 2009).

Weak disposability: Under constant inputs, reductions of all outputs by the same proportion are always feasible (Färe & Grosskopf 2004, Choi et al. 2012, Wei et al. 2012).

Descriptive statistics of the key variables in SBM model

Variable	Type of variable	Mean	Std. Dev.	Min	Max
Weight gain (tons per farm)	Good output	25.8	52.7	0.1	452.0
COD (tons per farm)	Bad output 1	6.4	12.9	0.0	124.9
Ammonia (kg per farm)	Bad output 2	124.6	347.5	0.2	4998.8
Labor (including both family and hired labor, days per farm)	Input 1	249.6	671.4	2.3	8376.0
Feed (including complete, concentrate, premix feed and other feed, tons per farm)	Input 2	79.7	162.2	0.23	1596.8
Other cost (including vaccine fee, and electricity and water fees, etc., 1000 yuan per farm)	Input 3	86.4	235.1	0.0	2096.9

4.1 Results – Waste Management

Leibniz Institute of Agricultural Development in Transition Economies

Waste management practices by farm size, village types and provinces (%)

	Manure	Biogas	Discharge	Sale	Fish Feed	other	
Sample average	44.6	23.3	15.4	4.5	8.9	3.3	
Farm size (marketed hogs per year)							
Backyard (1-9)	67.3	28.7	3.8	0.0	0.1	0.0	
Small (10-49)	59.6	22.4	13.6	1.4	2.4	0.6	
Specialized (50-499)	38.2	21.3	18.0	5.3	12.4	4.8	
Commercial (>=500)	(19.7)	28.3	18.5	(11.5)	16.0	6.0	
Province	\sim						
Jilin	64.0	2.2	(29.2)	1.4	0.0	3.2	
Shandong	63.0	4.8	20.5	10.9	0.0	0.9	
Hubei	44.0	34.1	7.4	4.8	5.6	4.2	
Sichuan	20.6	67.0	3.4	0.6	1.0	7.4	
Guangdong	26.2	13.1	14.5	3.6	41.2	1.4	
Whether a village has an environmental project							
1=yes	38.9	34.4	13.2	3.5	6.7	3.3	
0=no	52.7	7.7	18.4	5.9	11.9	3.4	

Source: authors' survey

4.2 Results – Pollutant emission

Leibniz Institute of Agricultural Development in Transition Economies

Pollutant emissions in hog production (kg per head of pig)

	COD	TN	ТР	Ammonia	
Sample average	31.1	3.0	0.43	0.49	
Farm size (marketed hogs per year)					
Backyard (1-9)	29.5	2.4	0.39	0.36	
Small (10-49)	31.9	3.3	0.43	0.45	
Specialized (50-499)	32.2	3.1	0.45	0.52	
Commercial (>=500)	26.8	2.6	0.38	0.57	
Whether a village has an ei	nvironmental pr	roject			
1=yes	28.1	2.6	0.37	0.37	
0=no	35.4	3.7	0.51	0.51	
Province					
Jilin	51.7	4.1	0.75	0.55	
Shandong	36.9	4.9	0.54	0.41	
Hubei	22.6	1.7	0.21	0.26	
Sichuan	18.6	0.9	0.22	0.33	
Guangdong	22.9	2.9	0.38	0.92	

Source: authors' estimation

www.iamo.de/en

Efficiency scores from SBM model across farm size, village type and province ^a

	Hog output	COD	Ammoni	a La	abor	Feed	Other cost	Overall
All sample	0.99	0.53	0.48).61	0.90	0.52	0.54
Farm size (marketed hogs p	er year,							
Backyard (1-9)	0.88	0.71	0.67	0).67	0.93	0.59	0.61
Small (10-49)	1.00	0.40	0.38	0).48	0.83	0.46	0.44
Specialized (50-499)	1.00	0.49	0.44	0	0.60	0.92	0.49	0.53
Commercial (>=500)	1.00	0.76	0.71	0).85	0.96	0.73	0.76
Environmental project in vil	age							
1=yes	0.99	0.56	0.51	0).63	0.91	0.54	0.56
0=no	0.98	0.48	0.44	0).58	0.89	0.50	0.51
Province								
Jilin	0.97	0.48	0.53	0).68	0.92	0.54	0.57
Shandong	1.00	0.34	0.38	0).51	0.85	0.47	0.45
Hubei	0.99	0.62	0.66	0).64	0.92	0.63	0.62
Sichuan	0.97	0.65	0.53	C).66	0.91	0.52	0.57
Guangdong	1.00	0.60	0.36	0).58	0.91	0.49	0.52

www.iamo.de/en/or and 0 = the least efficiency

Leibniz Institute of Agricultural Development in Transition Economies

Estimated shadow prices of undesirable outputs						
	COD (yuan/kg)	Ammonia (yuan/kg)				
Farm size (marketed hogs pe	er year)					
Backyard (1-9)	22.8	1695				
Small (10-49)	16.6	1151				
Specialized (50-499)	21.0	1395				
Commercial (>=500)	24.0	1539				
Whether a village has an env	vironmental project					
1=yes	21.7	1470				
0=no	18.5	1251				
Province						
Jilin	6.6	622				
Shandong	19.0	1657				
Hubei	34.1	2817				
Guangdong	20.7	528				
Sichuan	23.0	1275				
Average	20.4	1379				

5. Discussion

Leibniz Institute of Agricultural Development in Transition Economies

State of affairs?

- Low environmental efficiency
- Increasing problem of low manure-land ratio

Can the environmental efficiency be improved?

- Potential to increase environmental efficiencies in regions with low shadow price
- Where abatement cost of manure pollutants is high, monitoring and raising the awareness of farmers may not be sufficient

Outlook

- Government support for improving the participation of small- to medium farm size in existent manure **markets** (i.e. subsidization of transport and storage facilities)
- The use of manure for **biogas** as alternative (i.e. rural biogas project, which was firstly proposed in 2007 and now recently seized again by the Ministry of Agriculture's rural waste treatment pilot)

4.4 Results – Tobit regression

Μ

Leibniz Institute of Agricultural Development in Transition Economies

Regression results of factors affecting technical and environmental efficiency							
	overall	COD	ammonia	labor	feed	other	
Village Environment programs (0/1)	0.063*	0.050	0.057	0.074*	0.030	0.079	
	(0.033)	(0.041)	(0.040)	(-0.041)	(0.031)	(0.059)	
Farm size (sold hogs per year, control: s	small farms)						
Backyard (1-9)	0.139**	0.281***	0.241***	0.241***	0.184***	0.114	
	(0.066)	(0.076)	(0.068)	(0.068)	(0.056)	(0.110)	
Specialized (50-499)	0.095***	0.090**	0.095**	0.095**	0.136***	0.033	
	(0.036)	(0.044)	(0.041)	(0.041)	(0.033)	(0.065)	
Commercial (>=500)	0.405***	0.439***	0.504***	0.504***	0.255***	0.394***	
	(0.070)	(0.082)	(0.085)	(0.085)	(0.062)	(0.113)	
Distance feed shop (km)	-0.002	0.001	-0.000	-0.000	-0.010**	0.003	
	(0.006)	(0.008)	(0.007)	(0.007)	(0.005)	(0.011)	
Husbandy experience (yrs)	0.005**	0.006**	0.007***	0.007***	0.000	0.007*	
	(0.002)	(0.003)	(0.003)	(0.003)	(0.002)	(0.004)	
Education of hh (yrs)	0.008	0.009	0.008	0.008	0.002	0.015	
	(0.006)	(0.008)	(0.008)	(0.008)	(0.006)	(0.012)	
Age of hh (yrs)	0.002	0.002	0.002	0.002	-0.001	0.004	
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.004)	
Off-farm job (1/0)	0.059*	0.047	0.043	0.043	0.017	0.098	
	(0.035)	(0.043)	(0.041)	(0.041)	(0.031)	(0.067)	
Household consumption	0.001	0.000	0.001	0.001	0.000	0.001	
(1000 RMB/ per capita)	(0.001)	(0.001)	(0.001)	(0.001)	(0.000)	(0.001)	
Cultivated land (ha)	-0.003	-0.003	-0.003	-0.003	-0.005	-0.008	
ww.iamo.de/en	(0.008)	(0.010)	(0.009)	(0.009)	(0.005)	(0.013)	

- Causal effect of policies requires
 - More information about regional regulatory frameworks
 - Time series data
- Finer weights for usage of manure in fields (discharge of pollutants depends on absorption capacity of specific plant, irrigation, type of soil etc.)

3. Method

Leibniz Institute of Agricultural Development

Excursion: Estimation of pig waste

a) Transform the default produced pollutant coefficients of hogs to the farm specific ones:

$$C_{i,s} = C_{i,d} \frac{W_s^{0.75}}{W_d^{0.75}}$$

 $C_{i,s}$ produced pollutant coefficient for the ith pollutant in the sth farm

 $C_{i,d}$ default coefficient for the *ith* pollutant in the manual

 W_s hog weight gain in kg for the sth farm (subtracting the starting weight from the selling weight)

 \boldsymbol{W}_d reference hog weight given in the manual.

b) Estimate the *produced* pollutant for each specific farm:

$$P_{i,s} = W_s \cdot C_{i,s} \cdot D_s$$

 $P_{i,s}$ amount of the *ith* pollutant produced in the *sth* farm

 D_s average raising days for the sth farm

c) Estimate the discharged pollutant for each specific farm.

$$PD_{i,s} = P_{i,s} \cdot \sum_{j=1}^{n} k_j \cdot M_j$$

 $PD_{i,s}$ is the amount of the *i*th discharged pollutant for the sth farm

 M_i is the percentage of pollutants dealt with the jth waste management practice

 k_j weight capturing the rate of pollutants leaking into the environment for the jth waste management practice.

Source: Chinese Environmental Handbook

Step 2: Estimation of confounding factors

Tobit model $ES_i = f(CLEAN_v, Size_i, X_i, e_i; \beta_s),$

- *ES*_{*i*} technical or environmental efficiency score of the *i*-th hog farm,
- $CLEAN_{v}$ village has an environmental project (1 = yes, 0 = no)
- Size_i set of dummy variables representing the farm size,
- *X_i* set of farm characteristics and farmers' socioeconomic information (see Table A2),
- e_i the error term
- β_s are the coefficients to be estimated.

Descriptive statistics of the key variables in the regression analysis

Variable	Mean	Std. Dev.	Min	Max
Village environmental project related with livestock production (1=yes, 0=no)	0.59	0.49	0	1
Farm size (marketed hogs per year)				
Backyard (1=yes, 0=no)	0.11	0.31	0	1
Small (1=yes, 0=no)	0.26	0.44	0	1
Specialized (1=yes, 0=no)	0.48	0.50	0	1
Commercial (1=yes, 0=no)	0.15	0.36	0	1
Distance to the feed shop (km)	3.35	3.04	0	17
Livestock production experience of hh head (yrs)	12.01	7.36	0	42
Education of the head (yrs)	7.29	2.53	0	15
Age of the head	47.41	9.28	21	71
Household member with off-farm job (0/1)	0.25	0.43	0	1
Consumption expenditure per capita (1000 RMB)	19.92	35.97	1.2	300
Cultivated land (ha)	1.29	3.39	0	50

Source: authors' survey